J ohn F. Templeton, ${ }^{*, a}$ W eiyang Lin, ${ }^{\text {a }}$ Y angzhi Ling, ${ }^{\text {a }}$ H elena M ajgier-Baranowska ${ }^{a}$ and Kirk M arat ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Pharmacy, U niversity of M anitoba, W innipeg, M anitoba, C anada R 3T 2N 2
${ }^{\mathrm{b}}$ D epartment of Chemistry, U niversity of M anitoba, W innipeg, M anitoba, C anada R 3T 2N 2

19(R/S)-Substituted 13,19-cyclo-5 α-steroids have been synthesized by reductive cyclization of 3,17-dioxo5α-androst-1-en-19-al with zinc in aqueous acetic acid or lithium in ammonia. The major product from the zinc reaction, the 19(R)-cyclopropanol, exists in equilibrium with the 3-hemiketal; the minor product, the 19(S)-alcohol, is isolated as the silyl ether and deprotected to give the 19(S)-cyclopropanol. The major product from the lithium-ammonia reaction is the 19(S)-cyclopropanol. N either acid nor base treatment of the 19(R)- and 19(S)-alcohols gives evidence of their interconversion. Structures are established by N M R measurements.

Introduction

Various steroid cyclopropanols have been synthesized as potential steroid enzyme inhibitors. ${ }^{1-3}$ The 19(R/S)-hydroxy-1 β,19-cycloandrostane-3,17-diones were synthesized as potential aromatase inhibitors. While $1 \beta, 19$-cycloandrostane derivatives have been synthesized previously, none with a C-19 substituent have been reported. ${ }^{4}$ Recently we reported ${ }^{3}$ the synthesis of 19(R/S)-hydroxy-5 $\beta, 19$-cycloandrostane derivatives by reductive cyclization of the 3 -oxo-4-en-19-al with zinc in aqueous acetic acid or lithium in ammonia. We now report the synthesis and isomerization of 19(R)- and 19(S)-hydroxy-1 $\beta, 19$-cyclo-androstane-3,17-dione derivatives by reductive cyclization of 3,17-dioxo-5 α-androst-1-en-19-al with those reagents.

Results and discussion

Weiland and Anner ${ }^{4}$ prepared $1 \beta, 19$-cycloandrostane derivatives by treating a steroid 19 -mesylate 1 -en-3-one with lithium and biphenyl in tetrahydrofuran. Earlier Weiland and Anner ${ }^{5}$ attempted to synthesize both $1 \beta, 19$-cycloandrostane and 5β,19cycloandrostane derivatives in one reaction by treating a steroid 19-mesylate 1,4 -dien-3-one with lithium and biphenyl but obtained only the $5 \beta, 19$-cycloandrostane derivative. Initially we attempted to carry out a similar synthesis of $1 \beta, 19$ - and $5 \beta, 19-$ cycloandrostane $19(\mathrm{R} / \mathrm{S})$-alcohols from 3,17-dioxoandrosta-1,4-dien-19-al. However, preparation of the diene 19-alcohol for oxidation to the aldehyde was unsuccessful. 19-A cetoxy-androst-4-ene-3,17-dione $\mathbf{1 b}$ or the 19 -tert-butyldimethylsilyl ether $\mathbf{1 c}$, prepared from the 19 -alcohol $\mathbf{1 a}$, on treatment with benzeneseleninic anhydride ${ }^{6}$ gave the corresponding dienes, $\mathbf{2 a}$ and 2b (Scheme 1). However, removal of the acetate or silyl ether with NaOH or $\mathrm{Bu}_{4} \mathrm{~N} \mathrm{~F}$, respectively, to obtain the dien-19ol led to rapid ring A aromatization ${ }^{7}$ to give estrone 3a. Under the acidic conditions required for ketalization of the dienes $\mathbf{2 a}$ and $\mathbf{2 b}$, aromatization also occurred to give the $\mathbf{1 7}$ ethylenedioxy ketal 3b.

19-H ydroxyandrost-4-ene-3,17-dione 1a on catalytic hydrogenation gives mainly the 5β-androstane derivative, ${ }^{8,9}$ however, addition of a bulky 19 -tert-butyldimethylsilyl group 1c yielded the 5β-androstane 4 as the minor product and the 5α-androstane $\mathbf{5}$ as the major product after hydrogenation (Scheme 2). Introduction of a $\mathrm{C}-1$ double bond through bromination of the ketone 5 followed by dehydrobromination with $\mathrm{LiBr}-\mathrm{Li}_{2} \mathrm{CO}_{3}$ gave a low yield of the 1-en-3-one 6a (14\%) together with the $2 \beta, 19$-oxide 7 (55\%), and two minor products, the 4 -en-3-one 1c
and diene $\mathbf{2 b}$. Treatment of the ketone $\mathbf{5}$ with benzeneseleninic anhydride ${ }^{6}$ gave the desired 1 -en-3-one $\mathbf{6 a}(43 \%)$ as the major product and the unsaturated derivatives $\mathbf{1 c}$ (19%) and $\mathbf{2 b}$ (21%) as the minor products. Higher yields of the 1-en-3-one 6 a (70%) were obtained when the ketone 5 was refluxed with diphenyldiselenide, m-iodylbenzoic acid and camphorsulfonic acid in tetrahydrofuran ${ }^{10}$ together with the 4-ene $\mathbf{1 c}(12 \%)$ and the 1,4diene $\mathbf{2 b}$ (2%).
The 1-en-3-one 6a was deprotected with fluoride ion to give the alcohol $\mathbf{6} \mathbf{b}$ which was oxidized with pyridinium dichromate to the 19 -aldehyde 8 . Treatment of the aldehyde 8 with zinc in aqueous acetic acid gave on crystallization 19(R)-hydroxy$1 \beta, 19$-cyclo- 5α-androstane-3,17-dione 9 a in equilibrium with the hemiketal tautomer, 3α-hydroxy- 3β,19-epoxy-1 $\beta, 19$-cyclo5α-androstan-17-one 10a (51-68\%) as the major product. A ${ }^{1} \mathrm{H}$ NM R spectrum of the mother liquor from the reaction, which was not further purified, showed signals at $3.58 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=2.5$ Hz) assigned to the 19(S)-isomer 11a (5\%).

Trimethylsilylation of the remaining mother liquor from zinc and acetic acid treatment of the aldehyde $\mathbf{8}$ after crystallization of the ketone-hemiketal 9a/10a gave the 19(R)- and 19(S)trimethylsilyl ethers, $\mathbf{9 b}$ and $\mathbf{1 0 b}$, and the 3a-trimethylsilyl ketal 11b. Removal of the silyl group from either the 19(R)trimethylsilyl ether $9 \mathbf{b}$ or the hemiketal silyl ether $\mathbf{1 0 b}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH gave the ketone/hemiketal mixture 9a/10a. A similar mixture from the zinc and acetic acid treatment of the aldehyde 8, when treated with tert-butyldimethylsilylimidazole, gave the corresponding 19(R)- and 19(S)-tert-butyldimethylsilyl ethers 9c, 10c and the 3 α-tert-butyldimethylsilyl ketal 11c. Reaction of the 19(R)-alcohol 11a with the more sterically hindered tert-butyldimethylsilyl reagent was considerably slower than with the trimethylsilyl reagent. Treatment of 9c and 10c with concentrated HCl in methanol gave the 3α-methoxyketal 10d indicating an equilibrium in favour of that product. D eprotection of the 19(S)-tert-butyldimethylsilyl ether 11c with $\mathrm{Bu}_{4} \mathrm{NF}$ gave the 19(S)-cyclopropanol 11a. A cetylation of the ketone-hemiketal mixture 9a/10a with acetic anhydride and N, N-dimethylaminopyridine (DMAP) gave the 19(R)-acetate 9d. Treatment of the 19(R)- or 19(S)-alcohols with either HCl or KOH under conditions which caused epimerization of the 19(R/S)-hydroxy-5 β,19-cyclosteroids ${ }^{3}$ failed to give evidence of epimerization in the ${ }^{1}$ H NM R spectrum of the product.

By analogy with the formation of a 19(R)-hydroxy-5 β,19cyclosteroid reported earlier, ${ }^{3}$ metal attack on the 3 -carbonyl would produce a radical centre at $\mathrm{C}-1$ in a position to form an anion which adds to the adjacent aldehyde group to give the

Scheme 1 Reagents: i, $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{DMAP}$; ii, ButM e2SiCl-imidazole; iii, $(\mathrm{PhSeO})_{2} \mathrm{O}$; iv, $\mathrm{NaOH} ; \mathrm{v}, \mathrm{HOCH} \mathrm{H}_{2} \mathrm{CH} 2 \mathrm{OH}-\mathrm{p}-\mathrm{TsOH}$; vi, $\mathrm{Bu} \mathrm{u}_{4} \mathrm{NF}$

Scheme 2 Reagents: i, $\mathrm{H}_{2}-10 \% \mathrm{Pd} / \mathrm{C}-E t O A c ; ~ i i, ~ \mathrm{PhCH}_{2} \mathrm{M}_{3} \mathrm{NBr}_{3}$; iii, $\mathrm{LiBr}^{2} \mathrm{Li}_{2} \mathrm{CO}_{3}$; iv, $\mathrm{Ph}_{2} \mathrm{Se}_{2}$-camphorsulfonic acid-iodylbenzoic acid; v, $\mathrm{Bu}_{4} \mathrm{NF}$; vi, PDC; vii, Zn-HOA C-H H_{2}; viii, TM SOTf or TIPSOTf; ix, A $\mathrm{C}_{2} \mathrm{O}-\mathrm{DMAP} ; \mathrm{x}, \mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{M} \mathrm{COH}$; xi, $\mathrm{HCl}-\mathrm{M} \mathrm{eOH}$

19(S)-alcohol 11a (Scheme 3). Cyclization can then occur to give either the 19(R)- or 19(S)-alcohol; the 19(R)-alcohol is stabilized by hemiketal formation.
Treatment of the unsaturated aldehyde 8 with $\mathrm{Li}-\mathrm{NH}_{3}-\mathrm{THF}$ gave a mixture of $19(\mathrm{~S})$ and $19(\mathrm{R})$ derivatives tert-Butyldimethylsilylation of the product gave the disilylated $19(\mathrm{R})$ derivatives $\mathbf{1 3}$ (4\%) and 14 (6\%), the disilylated 19(S) derivative 15 (23\%) and the trisilylated 19(S) derivative 16 (5\%) (Scheme 4). The major product from reductive cyclization with $\mathrm{Zn}(\mathrm{R}: \mathrm{S}$, 20:1) was the 19(R)-alcohol/hemiketal 9a/10a whereas with Li the $19(\mathrm{~S})$-alcohol was the major product ($\mathrm{R}: \mathrm{S}, 1: 2.3$) from ${ }^{1} \mathrm{H}$ NMR comparison of the $19-\mathrm{H}$ proton. The different epimer ratio may be because of a difference in the preferred rotational conformation resulting from the temperature variance ($90^{\circ} \mathrm{C}$) between the reactions. The heterogeneous nature of the Zn reaction may also be a factor in favouring formation of the 19(R)-epimer.
Preparation of the trimethylsilyl and triisopropylsilyl enol ethers of the diketone 9 d gave the non-crystalline $\mathrm{C}-2$ enol derivatives 12a and 12b, respectively. Attempts to introduce a C-4 doublebond either directly to the diketone 9 dusing benzeneseleninic anhydride, ${ }^{6}$ dichlorodicyanoquinone or through oxi-
dation of the silyl enol ethers $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ with N -bromosuccinamide at $20^{\circ} \mathrm{C}{ }^{11}$ or $\mathrm{NBS}-\mathrm{AIBN}-\mathrm{CCl}_{4}$ under reflux ${ }^{11}$ were unsuccessful probably because of the preferred C-2 enolization.

Nuclear magnetic resonance analysis

The structures of all products are in agreement with the N M R data described in Tables 1 and 2. The structures of the acetate 9d and the silyl enol ether 12a were confirmed by COSY ${ }^{12}$ and HSQC ${ }^{13}$ spectra which allowed complete NMR assignments. The ${ }^{1} H$ N M R spectrum of the acetate showed a singlet at 2.03 ppm corresponding to the acetate group and a doublet at 4.31 ppm (J 7.5 Hz) assigned to the C-19 cyclopropyl proton. The observation of a strong N OE from H-19 to $\mathrm{H}-11 \beta$ (10\%) and $\mathrm{H}-8(1.7 \%)$ confirms the location of the cyclopropyl ring on the β-face with the $19-\mathrm{H}$ exo. The cis coupling (J 7.5 Hz) between the $19-\mathrm{H}$ and the $\mathrm{H}-1 \alpha$ also agrees with the 19(R)stereochemistry. The 19(S) -trimethylsilyl derivative 11b showed the trimethylsilyl group as a singlet at 0.16 ppm and a doublet at $3.33 \mathrm{ppm}(\mathrm{J} 3.1 \mathrm{~Hz}$) assigned to the $\mathrm{C}-19 \mathrm{H}$. This trans coupling between the $19-\mathrm{H}$ and the $\mathrm{H}-1 \alpha$ confirms the 19(S)-stereochemistry. The crude silyl enol ethers 12a and 12b showed

Table $1^{1} \mathrm{H}$ N M R chemical shifts (J in Hz) ${ }^{\text {a }}$

Compd.	$13-\mathrm{Me}$	19-H	COCH_{3}	Other
1 a	0.92	3.94, 4.07 ($\mathrm{d}, \mathrm{J}_{\text {AB }} 10.3$)		5.96 (s, 4-H)
1 b	0.92	4.19, 4.68 ($d, J_{\text {J }}{ }^{\text {a }} 11.3$)	2.02	5.93 (s, 4-H)
$1 c^{\text {b }}$	0.92	3.90 (dd, J 10.5, 12.5)		5.87 (s, 4-H)
2a	0.95	4.42, 4.64 ($\mathrm{d}, \mathrm{J}_{\text {AB }} 10.9$)	1.93	6.21 (s, 4-H), 6.36 (dd, J 1.9, 8.72, 2-H), 7.07 (d, J 10.2, 1-H)
$2 b^{\text {b }}$	0.95	3.86, 4.00 ($d, J_{A B}{ }^{\text {a }}$ 9.6)		6.15 (s, 4-H), 6.33 (dd, J 1.9, 10.2, 2-H), 7.09 (d, J 10.2, 1-H)
$3 a^{\text {c }}$	0.91			$\begin{aligned} & 2.85(\mathrm{~m}, 6-\mathrm{H}), 4.80(\mathrm{~s}, 3-\mathrm{OH}), 6.58(\mathrm{~d}, \mathrm{~J} 2.6,4-\mathrm{H}), 6.64(\mathrm{dd}, \mathrm{~J} 2.7,8.4,2-\mathrm{H}), 7.15(\mathrm{~d}, \\ & \text { J } 8.4,1-\mathrm{H}) \end{aligned}$
$3 b^{\text {c }}$	0.88			$\begin{aligned} & 2.79(\mathrm{~m}, 6-\mathrm{H}), 3.91\left(\mathrm{~m}, 17-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.86(\mathrm{~s}, 3-\mathrm{OH}), 6.55(\mathrm{~d}, \mathrm{~J} 2.6,4-\mathrm{H}), 6.62 \\ & (\mathrm{dd}, \mathrm{~J} 2.6,8.3,2-\mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J} 8.4,1-\mathrm{H}) \end{aligned}$
$4^{\text {b-d }}$	0.90	3.60, 3.81 ($d, J_{\text {AB }} 9.7$)		2.26 (m, 5 $\beta-\mathrm{H}$), 2.63 (dd, J 14.6, 14.6, $4 \beta-\mathrm{H})$
$5^{\text {b-d }}$	0.90	3.91, 3.97 ($\mathrm{d}, \mathrm{J}_{\text {AB }}$ 10.8)		$\begin{aligned} & 0.08,0.10\left(\mathrm{~m}, \mathrm{SiM} e_{2}\right), 0.89\left(\mathrm{~s}, \mathrm{CM} \mathrm{e}_{3}\right), 1.67(\mathrm{~m}, 5 \alpha-\mathrm{H}), 2.07(\mathrm{~m}, 16 \alpha-\mathrm{H}), 2.45(\mathrm{~m}, 16 \beta- \\ & \mathrm{H}+4 \beta-\mathrm{H}) \end{aligned}$
$6 \mathrm{a}^{\mathrm{b}, \mathrm{c}}$	0.90	3.74, 3.98 (d, J AB 10.6)		2.70 (dd, J 14.2, 17.8, 4 4 -H), 6.01 (d, J 10.3, 2-H), 6.98 (d, J 10.2, 1-H)
$6 b^{\text {c }}$	0.92	3.83, 4.11 ($d, J_{\text {J }}{ }^{\text {B }}$ 11.5)		```2.25 (dd, J 4.7, 17.8, 4\alpha-H), 2.77 (dd, J 14.4, 18.0, 4\beta-H), 6.11 (d, J 10.2, 2-H), 7.01 (d,J 10.2, 1-H)```
$7{ }^{\text {c,d }}$	0.83	3.89, 4.06 ($\mathrm{d}, \mathrm{J}_{\text {AB }} 8.4$)		$\begin{aligned} & 2.08(\mathrm{~m}, 16 \alpha-\mathrm{H}), 2.18(\mathrm{dd}, \mathrm{~J} 5.8,15.2,4 \alpha-\mathrm{H}), 2.40(\mathrm{dd}, \mathrm{~J} 11.8,15.2,4 \beta-\mathrm{H}), 2.53 \\ & (\mathrm{dd}, \mathrm{~J} 7.4,12.5,1 \alpha-\mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J} 7.1,2-\mathrm{H}) \end{aligned}$
$8{ }^{\text {d }}$	0.96	9.93 (s)		6.23 (d, J 10.2, 2-H), 7.00 (d, J 10.2, 1-H)
$9 \mathrm{~b}^{\text {c,e }}$	0.87	3.49 (d, J 7.0)		2.54 (d, J 2.3, $2 \beta-\mathrm{H}$), 2.59 (dd, J 4.9, 18.4, $2 \alpha-\mathrm{H}$)
$9 \mathrm{c}^{\mathrm{b}, \mathrm{c}}$	0.86	3.53 (d, J 7.1)		
$9 \mathrm{~d}^{\text {c }}$	0.90	4.31 (d, J 7.5)	2.03	2.54 (d, J 17.5, 2 β-H), 2.64 (dd, J 5.1, 17.5, $2 \alpha-\mathrm{H}$)
$10{ }^{\text {c-e }}$	0.84	4.02 (d, J 5.6)		1.72 (dd, J 2.6, 4.4, 12 $\beta-\mathrm{H}$), 1.87 (d, J 11.7, 2 $\beta-\mathrm{H}$), 1.92 (t, J 11.0, 4 α-H)
$10{ }^{\text {b,c }}$	0.83	4.00 (d, J 5.3)		
$10 \mathrm{~d}^{\text {c }}$	0.84	4.02 (d, J 5.5)		3.32 (s, 3 - OM e)
$11 a^{\text {c }}$	0.88	3.58 (d, J 2.5)		
$11{ }^{\text {c,e }}$	0.87	3.33 (d, J 3.1)		2.58 (d, J 5.2, $2 \beta-\mathrm{H}$), 2.65 (dd, J 1.7, 19.4, $2 \alpha-\mathrm{H}$)
$11{ }^{\text {b,c }}$	0.87	3.38 (d, J 3.1)		
12a ${ }^{\text {c,e }}$	0.87	4.10 (d, J 7.0)	2.03	4.90 (dd, J 1.7, 6.7, 2-H)
$12 b^{\text {c }}$	0.88	4.13 (d, J 7.0)	2.01	1.07 (d, J 5.9, CH M e2), 4.87 (dd, J 1.7, 6.7, 2-H)
$13^{\text {b }}$	0.69	3.55 (m)		3.55 (m, 17 $\alpha-\mathrm{H})$
$14^{\text {b }}$	0.66	4.00 (d, J 5.5)		3.52 (t, J 8.2, 17 α-H)
$15^{\text {b,d }}$	0.69	3.35 (d, J 3.1)		3.55 (dd, J 7.9, 8.5, 17 α-H)
$16^{\text {b,d }}$	0.67	3.02 (d, J 2.9)		

a For solution in $\mathrm{CDCl}_{3}\left(\mathrm{CHCl}_{3}\right.$ internal standard) on a Bruker AM 300 instrument unless otherwise indicated. J Values are given in Hz .

$\mathbf{6 b}, 7,9 \mathrm{c}, 9 \mathrm{~b}, 10 \mathrm{~b}, 10 \mathrm{c}, 10 \mathrm{~d}, 11 \mathrm{a}, 11 \mathrm{~b}, 11 \mathrm{c}, 12 \mathrm{a}, 12 \mathrm{~b}$ show the $16 \beta-\mathrm{H}$ signal at ca. $\delta 2.5$ (dd, J 9, 19). ${ }^{\text {d }}$ D etermined by 2 D analysis on a Bruker $\mathrm{A} M \times 500$ instrument. ${ }^{\mathbf{e}}$ Compounds $\mathbf{9 b}, \mathbf{1 0 b}, \mathbf{1 1 b}, \mathbf{1 2 a}$ show the SiM_{3} signal at $\mathrm{ca} . \delta 0.15$ (s).

(R)

(R)

Scheme 3 Reductive cyclization of the steroid 3-0xo-1-en-19-al to 19(R/S)-hydroxy-1,19-cyclosteroids (M = Zn, Li); R:S (20:1, Zn), (1:2.3, Li)
signals at $4.9 \mathrm{ppm}(\mathrm{dd}, \mathrm{J} 1.7,6.7 \mathrm{~Hz}$) assigned to the $2-\mathrm{H}$ based on 2D N M R analysis. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra of compounds 13-16 are consistent with their 17-0xo analogues 9c, 10c and 11c, respectively, but show the presence of the 17β alcohol. Compound 16 also shows a broad signal for the axial $3 \alpha-\mathrm{H}$ and no NOE between the $3-\mathrm{H}$ and the $19-\mathrm{H}$, showing the formation of the 3β-alcohol.

Scheme 4 Reagents: $\mathrm{i}, \mathrm{Li}-\mathrm{NH}_{3}-\mathrm{THF} ; \mathrm{ii}, \mathrm{Bu}^{\mathrm{t}} \mathrm{M}_{2} \mathrm{SiCl}^{\mathrm{S}}-\mathrm{Pr}_{2} \mathrm{EtN}-\mathrm{DM}$ F

A romatase inhibition

The 19(R)-ketone/hemiketal 9a/10a and 19(R)-acetate 9d showed $40-50 \%$ of the aromatase inhibitory activity of 4 -hydroxyandrost-4-ene-3,17-dione used as a standard when tested on human placental aromatase microsomes. ${ }^{14}$

Experimental

Reactions were monitored by TLC which was carried out in

Table $2{ }^{13} \mathrm{C}$ N M R chemical shifts ${ }^{\text {a }}$

Carbon	Compound								
	$1 b^{\text {b,c }}$	$1 c^{\text {c }}$	$2 a^{\text {b }}$	$2 b^{\text {c }}$	$3 b^{\text {d }}$	$4^{\text {c,e }}$	$5^{\text {c,e }}$	6a ${ }^{\text {c }}$	6b
1	32.84	$33.29{ }^{1}$	151.05	152.45	126.48	31.16	33.96	130.27	131.13
2	34.51	34.69	130.46	129.99	112.62	36.91	38.64	153.46	152.54
3	198.99	199.65	185.89	186.40	153.29	212.84	211.91	200.17	200.16
4	126.87	126.02	126.73	126.03	115.23	42.06	44.86	41.68	41.70
5	164.82	167.25	163.49	165.54	138.28	36.38	46.23	44.35	44.31
6	33.49	$33.58{ }^{\text {i }}$	$32.37{ }^{\text {i }}$	32.23	29.62	24.49	28.32	27.37	27.25
7	31.53	$30.79^{\text {j }}$	31.48	31.63	26.93	25.90	$30.66^{\text {i }}$	$30.36{ }^{\text {i }}$	$30.34{ }^{\text {i }}$
8	35.67	35.93	35.66	35.71	39.54	35.21	35.51	35.77	35.60
9	54.02	54.07	52.86	52.27	43.60	41.59	54.33	52.05	51.85
10	41.82	43.60	$47.56{ }^{\text {j }}$	$49.58{ }^{\text {i }}$	132.73	39.22	39.54	43.37	43.68
11	20.78	$20.96{ }^{\text {k }}$	22.63	22.60	26.16	20.59	$21.72{ }^{\text {j }}$	$21.16{ }^{\text {j }}$	$21.16{ }^{\text {j }}$
12	30.85	$31.73{ }^{\text {j }}$	$32.40{ }^{\text {i }}$	32.81	30.75	32.04	$31.93{ }^{\text {i }}$	$31.80{ }^{\text {i }}$	$31.71{ }^{\text {i }}$
13	47.41	47.59	$47.69^{\text {j }}$	47.70°	46.18	47.77	47.79	47.88	47.79
14	51.09	51.34	50.84	50.97	49.36	51.92	51.66	50.23	50.16
15	21.57	$21.71{ }^{\text {k }}$	21.83	21.87	22.37	21.71	$21.78{ }^{\text {j }}$	$21.69{ }^{\text {j }}$	$21.67{ }^{\text {j }}$
16	35.56	35.71	35.51	35.60	34.24	35.83	35.79	35.75	35.72
17	219.64	220.10	219.14	219.62	119.50	220.47	220.72	220.27	220.22
18	13.73	13.89	13.85	13.96	14.36	13.91	13.92	14.10	13.98
19	66.49	65.81	63.48	64.34		65.19	60.87	62.06	61.39
Carbon	Compound								
	$7{ }^{\text {e }}$	$8{ }^{\text {e }}$	$9 b^{\text {f }}$	$9 \mathrm{c}^{\text {c }}$	$9 \mathrm{~d}^{\text {b }}$	$10 b^{\text {fe }}$	$10 c^{\text {c }}$	$10 \mathrm{~d}^{9}$	11a
1	41.28	132.14	17.66	17.66	17.41	19.28	19.28	19.07	20.38
2	81.45	147.24	35.08	34.89	34.73	36.27	36.29k	$30.02{ }^{\text {i }}$	35.98
3	209.57	197.54	211.99	211.75	210.10	104.29	104.11	105.84	199.42
4	42.42	41.24	44.47	44.53	43.96	42.79	42.88	39.41	43.74
5	44.67	45.14	38.56	38.77	38.02	35.67	$35.70{ }^{\text {i }}$	$35.35{ }^{\text {j }}$	38.77
6	29.71	28.18	32.52	32.70	32.68	$35.75{ }^{\text {i }}$	$35.80{ }^{\text {i }}$	$35.77^{\text {j }}$	33.02
7	30.08	$31.59{ }^{\text {i }}$	$30.83{ }^{\text {i }}$	$30.92^{\text {i }}$	30.68	30.30	30.37	$30.28{ }^{\text {i }}$	31.35
8	37.75	36.09	39.48	39.74	39.10	39.14	39.19	39.16	39.77
9	46.04	51.43	46.52	46.60	46.22	44.69	42.87	44.69	46.55
10	47.41	55.40	26.05	26.17	26.93	25.17	25.20	25.47	30.66
11	20.65	$21.30{ }^{\text {j }}$	$21.69{ }^{\text {j }}$	$21.75{ }^{\text {j }}$	21.57	$21.46{ }^{\text {j }}$	$21.50{ }^{\text {j }}$	$21.49{ }^{\text {k }}$	21.82
12	31.19	$30.03{ }^{\text {i }}$	$31.08{ }^{\text {i }}$	$31.11^{\text {i }}$	31.02	31.27	31.33	31.28	31.68
13	47.66	47.79	47.54	47.58	47.54	47.61	47.66	47.60	47.89
14	51.30	48.92	50.97	50.98	50.95	50.68	50.73	50.69	51.63
15	21.70	$21.62{ }^{\text {j }}$	$21.81{ }^{\text {j }}$	$21.83{ }^{\text {j }}$	21.63	$21.62{ }^{\text {j }}$	$21.68{ }^{\text {j }}$	$21.63{ }^{\text {k }}$	23.04
16	35.74	35.66	35.86	35.92	35.80	$35.82{ }^{\text {i }}$	$36.29{ }^{\text {k }}$	$35.82^{\text {j }}$	37.00
17	220.12	219.89	220.57	220.63	220.28	220.79	220.86	220.71	221.23
18	13.59	13.92	13.59	13.56	13.68	13.62	13.66	13.66	13.76
19	67.43	201.27	54.74	55.54	56.93	60.47	60.47	60.40	55.87
Carbon	Compound								
	$11 b^{\text {f }}$	$11 c^{\text {c }}$	12a ${ }^{\text {b,f }}$	$12 \mathrm{~b}^{\text {b,h }}$	$13^{\text {c }}$	$14^{\text {c }}$	$15^{\text {c,e }}$	$16^{\text {c,e }}$	
1	19.93	20.17	19.17	19.19	17.42	19.10	19.97	20.13	
2	35.98	35.95	97.28	95.77	34.94	36.06	$37.38{ }^{\text {i }}$	33.68	
3	209.98	209.99	150.28	150.74	212.20	104.05	210.50	69.20	
4	43.80	43.80	$35.92{ }^{\text {i }}$	$35.85{ }^{\text {i }}$	44.64	49.94	43.93	$37.53{ }^{\text {i }}$	
5	38.24	38.34	36.98	37.21	38.87	35.78	38.51	39.96	
6	32.97	32.99	31.93	31.92	32.90	36.37	33.21	32.33	
7	$31.36{ }^{\text {i }}$	31.34	$30.95{ }^{\text {j }}$	$31.00^{\text {j }}$	31.66	30.98	32.13	32.74	
8	39.01	39.13	39.29	39.26	40.40	39.79	39.76	42.11	
9	46.49	46.71	46.28	46.32	46.65	44.82	46.95	48.36	
10	29.12	29.51	28.76	28.69	26.22	29.73	29.70	31.64	
11	21.82	21.81	$21.76{ }^{\text {k }}$	$21.75{ }^{\text {k }}$	22.16	21.88	23.32	$23.51{ }^{\text {i }}$	
12	$31.71{ }^{\text {i }}$	31.76	$31.03{ }^{\text {j }}$	$31.05{ }^{\text {j }}$	36.54	36.87	$37.45^{\text {i }}$	$37.47{ }^{\text {i }}$	
13	47.86	47.86	47.55	47.57	43.19	43.24	43.35	43.48	
14	51.54	51.67	51.00	51.03	50.14	49.94	50.98	51.23	
15	22.82	22.82	$21.68{ }^{\text {k }}$	$21.69{ }^{\text {k }}$	23.47	23.41	23.52	23.59	
16	37.37	37.31	$35.79{ }^{\text {i }}$	$35.85{ }^{\text {i }}$	30.97	31.13	31.03	31.06	
17	221.29	221.23	220.50	220.55	81.61	81.72	81.62	81.71	
18	13.38	13.76	13.66	13.67	11.23	11.27	11.40	11.55	
19	55.51	56.62	59.77	59.88	56.65	60.68	56.72	60.85	

[^0]the following solvent systems on silica gel (M erck type 60H): acetone-light petroleum ($\mathrm{bp} 35-60^{\circ} \mathrm{C}$) (LP), $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}, \mathrm{EtOA} \mathrm{C}-$ LP; compounds were visualized by dipping the plates in 5% sulfuric acid-ethanol followed by heating on a hot-plate at ca $120^{\circ} \mathrm{C}$. Reaction mixtures were separated by flash column chromatography (FCC). M elting points were determined on either an Electrothermal or K ofler type hot-stage apparatus and are uncorrected. Elemental analyses were performed by Mr W. Baldeo, School of Pharmacy, U niversity of London, England.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in Tables 1 and 2. Survey spectra were obtained on a Bruker A M 300 instrument while two-dimensional and NOE spectra were recorded on a Bruker AM X 500 spectrometer. Samples were measured as ~ 50 $\mathrm{mmol} \mathrm{dm}^{-3}$ solutions in CDCl_{3} in 5 mm sample tubes. The residual CHCl_{3} peak in the solvent $\left(\delta_{\mathrm{C}}=77.0 \mathrm{ppm}, \delta_{\mathrm{H}}=7.26\right.$ ppm) was used as the internal reference for both proton and carbon spectra. J Values are given in Hz . Sample temperature was controlled at 300 K for all spectra. M ultiplicity of peaks in the carbon spectra were classified with the DEPT technique. ${ }^{15}$

H omonuclear correlation (COSY), heteronuclear correlation (HSQC) and nuclear Overhauser effect (NOE) difference spectra were recorded as described previously. ${ }^{16}$

19-A cetox yandrost-4-ene-3,17-dione 1b and 19-acetox yandrosta-1,4-diene-3,17-dione 2a

DMAP (200 mg) and $A C_{2} O\left(5 \mathrm{~cm}^{3}\right)$ were added to the 19alcohol la ($1.0 \mathrm{~g}, 3.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h when TLC indicated that the reaction was complete. The mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the 19 -acetate $\mathbf{1 b}{ }^{8,17}$ which was used for the next reaction. The acetate $\mathbf{1 b}$, with benzene seleninic anhydride (1.0 g) and $\mathrm{NaHCO}_{3}(1.0 \mathrm{~g})$ in benzene (30 cm^{3}), was heated under reflux in an inert atmosphere for 18 h . The mixture was cooled, washed with aqueous 0.1 м sodium phosphate buffer (pH 7.1) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as described by Cole and Robinson. ${ }^{6}$ The aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer washed with water and evaporated to give a residue which was separated by FCC. Elution with 30% acetone-LP gave the diene $\mathbf{2 a}$ ($340 \mathrm{mg}, 30 \%$), $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 73.5 ; \mathrm{H}, 7.7$. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.7 ; \mathrm{H}, 7.65 \%$) and the acetate $\mathbf{1 b}$ (300 $\mathrm{mg}, 26 \%$).

19-tert-B utyIdimethylsilyloxyandrost-4-ene-3,17-dione 1c

Imidazole (2.0 g) and $\mathrm{Bu}^{+} \mathrm{M} \mathrm{e}_{2} \mathrm{SiCl}(4.0 \mathrm{~g}, 26.5 \mathrm{mmol}$) were added to a solution of the 19-alcohol la ($7.0 \mathrm{~g}, 23 \mathrm{mmol}$) in dimethylformamide (D M F) $\left(50 \mathrm{~cm}^{3}\right)$. The mixture, after 2 h at $50^{\circ} \mathrm{C}$, was cooled, diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with brine, dried and evaporated to give the silyl ether 1c ($5.6 \mathrm{~g}, 58 \%$), mp $161-162^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 71.9 ; \mathrm{H}, 9.7 . \mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires C , 72.1; H, 9.7\%).

19-tert-B utyldimethylsilyloxyandrosta-1,4-diene-3,17-dione 2b

The $19-\mathrm{Bu}^{\mathbf{t}} \mathrm{M}_{2} \mathrm{Si}$ ether $\mathbf{1 c}$ ($500 \mathrm{mg}, 1.20 \mathrm{mmol}$) was refluxed with benzeneseleninic anhydride ($500 \mathrm{mg}, 1.39 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(500 \mathrm{mg})$ in benzene ($20 \mathrm{~cm}^{3}$) under an Ar atmosphere for 20 h . The mixture was cooled to $20^{\circ} \mathrm{C}$ and washed with aqueous 0.1 m sodium phosphate buffer (pH 7.1) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{6}$ The aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a residue which was separated by FCC and on elution with 10% acetone-LP gave the diene 2b ($131 \mathrm{mg}, 26 \%$), $\mathrm{mp} 160-163^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 72.2 ; \mathrm{H}, 9.3 . \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires C, 72.4; H , 9.2%) and starting material $\mathbf{1 c}(150 \mathrm{mg}, 30 \%), \mathrm{mp} 154-157^{\circ} \mathrm{C}$ (from CH $2_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).

E stra-1,3,5(10)-trien-17-one-3-ol (estrone) 3a

With $\mathrm{NaOH} .10 \%$ A queous $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$ was added to the

1,4-diene 2 a ($30 \mathrm{mg}, 0.09 \mathrm{mmol}$) in methanol ($2 \mathrm{~cm}^{3}$) and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . The mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; work-up gave the estrone $3 \mathrm{a}(18 \mathrm{mg}, 76 \%)$, $\mathrm{mp} 257-260^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (lit., ${ }^{18} \mathrm{mp}$ $258-260^{\circ} \mathrm{C}$).
With $\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{NF}$. $\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{NF}(7 \mathrm{mg})$ was added to the 1,4-diene $\mathbf{2 b}$ $(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h to give the estrone 3 a . It was identified by TLC and ${ }^{1} \mathrm{H}$ NM R comparison with an authentic sample.

17,17-E thylenediox yestra-1,3,5(10)-trien-3-ol 3b

From 2a. p-TsOH (5 mg) and ethylene glycol ($1 \mathrm{~cm}^{3}$) were added to the 1,4-diene $\mathbf{2 a}$ ($30 \mathrm{mg}, 0.09 \mathrm{mmol}$) in benzene $\left(4 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 1 h . It was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a crude product which was separated by FCC. Elution with 10% acetone-LP gave fractions of the non-crystalline ketal 3b ($20 \mathrm{mg}, 70 \%$), identified by TLC and N M R comparison with the sample from 2 b below.
From 2b. Toluene-p-sulfonic acid ($\mathrm{p}-\mathrm{TsOH}$) (5 mg) and ethylene glycol ($1 \mathrm{~cm}^{3}$) were added to the 1,4 -diene $\mathbf{2 b}$ ($60 \mathrm{mg}, 0.14$ mmol) in benzene ($4 \mathrm{~cm}^{3}$) and the mixture was refluxed for 1 h . It was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a crude product which was separated by FCC. Elution with 10% acetone-LP gave the ketal $\mathbf{3 b}(40 \mathrm{mg}, 88 \%)$, mp 164$167^{\circ} \mathrm{C}$ (from Et O) (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 8.1 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$ requires C, 76.4; H, 8.3\%).

19-tert-B utyldimethyIsilyloxy-5 α-androstane-3,17-dione 4 and 19-tert-butyldimethylsilyloxy-5 β-androstane-3,17-dione 5

A solution of the $19-\mathrm{Bu}^{+} \mathrm{M} \mathrm{e}_{2} \mathrm{Si}$ ether $\mathbf{1 c}(13.4 \mathrm{~g}, 32 \mathrm{mmol})$ in EtOAc ($120 \mathrm{~cm}^{3}$) was stirred with 10% Pd-C (1.34 g) under a hydrogen atmosphere for 18 h . It was then filtered and evaporated under reduced pressure to give on FCC (elution with 30 $50 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) fractions of the 5α-isomer 5 ($9.9 \mathrm{~g}, 73 \%$), $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: $\mathrm{C}, 71.4 ; \mathrm{H}, 10.2$. $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 71.7 ; \mathrm{H}, 10.1 \%$) and the 5β-isomer 4 ($3.36 \mathrm{~g}, 25 \%$), mp $153-154^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: C, $71.7 ; \mathrm{H}, 10.3 . \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 71.7 ; \mathrm{H}, 10.1 \%$).

19-tert-B utyldimethyIsilylox yandrost-4-ene-3,17-dione 1c; 19-tert- butyldimethylsilyloxyandrosta-1,4-diene-3,17-dione 2 b and 19 -tert-butyldimethylsilyloxy-5 α-androst-1-ene-3,17-dione 6 a
From $\mathbf{P h}(\mathrm{SeO})_{2} \mathbf{O}$. The silyl ether $\mathbf{5}(2.0 \mathrm{~g}, 4.8 \mathrm{mmol})$, with benzeneseleninic anhydride ${ }^{6}(1.6 \mathrm{~g})$ and $\mathrm{NaHCO}_{3}(1.5 \mathrm{~g})$ in benzene ($80 \mathrm{~cm}^{3}$), was heated under reflux in an Ar atmosphere for 2 h . The mixture was cooled, washed with aqueous 0.1 m aqueous sodium phosphate buffer (pH 7.1) and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{6}$ The aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with water and evaporated to give a residue which was separated by FCC. Elution with 10% acetone-LP gave the 1 -ene 6 a (860 mg , 43%), mp $143-145^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$), the 4 -ene 1 c (380 $\mathrm{mg}, 19 \%$), mp $155-158{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) and the $1,4-$ diene $\mathbf{2 b}$ ($424 \mathrm{mg}, 21 \%$), $\mathrm{mp} 155-158{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).

From $\mathbf{P h}_{2} \mathbf{S e}_{2}$. A mixture of diphenyl diselenide ($817 \mathrm{mg}, 2.26$ mmol), camphorsulfonic acid ($3.0 \mathrm{~g}, 12.9 \mathrm{mmol}$) and iodylbenzoic acid ($7.5 \mathrm{~g}, 26.3 \mathrm{mmol}$) was heated under reflux in dry THF until the yellow colour of the diselenide disappeared (10 $\mathrm{min})$. A solution of the $19-\mathrm{Bu}^{\mathrm{t}} \mathrm{M} \mathrm{e}_{2} \mathrm{Si}$ ether 5 ($11 \mathrm{~g}, 26 \mathrm{mmol}$) in TH F ($220 \mathrm{~cm}^{3}$) was added to the mixture and reflux continued for a further 2 h when TLC showed the absence of starting material. The reaction mixture was poured into aqueous NaHCO_{3} and extracted with EtOAc. The extract was washed with water and worked up to give a crude product which on FCC (elution with $30-40 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) gave fractions of the 1-en-3-one 6 a ($7.64 \mathrm{~g}, 70 \%$), $\mathrm{mp} 144-146{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ EtOAc), the 4 -ene $1 \mathrm{c}\left(1.35 \mathrm{~g}, 12 \%\right.$), mp $157-159^{\circ} \mathrm{C}$ (from
$\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) and the 1,4 -diene $\mathbf{2 b}$ ($180 \mathrm{mg}, 2 \%$), mp 166.5$167.5^{\circ} \mathrm{C}$ (from Et $\mathrm{E}_{2} \mathrm{O}-\mathrm{LP}$).

19-tert-B utyldimethylsilyloxy-5 α-androst-1-ene-3,17-dione 6a and 2 β,19-epoxy- 5α-androstane-3,17-dione 7
To a stirred solution of the silyl ether $5(1.0 \mathrm{~g}, 2.4 \mathrm{mmol})$ in HOAC ($10 \mathrm{~cm}^{3}$) containing $48 \%(w / w) \mathrm{HBr}\left(0.05 \mathrm{~cm}^{3}\right)$ was added benzyl(trimethyl)ammonium tribromide (1.24 g) in portions until the bromine colour disappeared ($\sim 5 \mathrm{~min}$). The mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was washed with water and evaporated to give a residue. This was treated with $\mathrm{LiBr}(2.5 \mathrm{~g})$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}(2.5 \mathrm{~g})$ in DM F $\left(30 \mathrm{~cm}^{3}\right)$ for 5 h under reflux and then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and evaporated to give a crude product which was separated by FCC. Elution with 20% EtOA c-LP, gave the 1-ene 6a (141 mg , 14%), mp $139-141^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 72.3 ; \mathrm{H}$, 9.7. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3}$ Si requires $\mathrm{C}, 72.1 ; \mathrm{H}, 9.7 \%$), and the cyclic ether 7 ($400 \mathrm{mg}, 55 \%$), mp $143-146^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: C, $75.3 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%\right)$. The R_{F} of two minor products on TLC corresponded to $\mathbf{1 c}$ and $\mathbf{2 b}$.

19-H ydroxy-5 α-androst-1-ene-3,17-dione 6b

To the silyl ether 6a ($500 \mathrm{mg}, 1.20 \mathrm{mmol}$) in THF ($25 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}_{4} \mathrm{NF}$ (530 mg) and the mixture stirred for 1 h . It was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and evaporated to yield a product which was separated by FCC. Elution with 25% acetone-LP gave the 19-alcohol 6 b ($300 \mathrm{mg}, 83 \%$), mp $200-202{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 75.2 ; \mathrm{H}, 8.95 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}$, 8.7\%).

3,17-D ioxo-5a-androst-1-en-19-al 8

The 1-ene 6 b ($735 \mathrm{mg}, 2.43 \mathrm{mmol}$) and pyridinium dichromate (1.0 g) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 2 h . It was then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$, filtered through Celite and evaporated to give a residue which was separated by FCC. Elution with 30% acetone-LP gave the aldehyde 8 ($603 \mathrm{mg}, 82 \%$), mp $148-150^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 75.75 ; \mathrm{H}, 8.0 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.0 ; \mathrm{H}, 8.05 \%$).

(19R)-19-H ydroxy-1ß,19-cyclo-5 α-androstane-3,17-dione/3-

 hydroxy-3 β,19-epoxy-1 β, 19-cyclo-5 α-androstan-17-one 9a/10aFrom 8. Zn powder (25 g) was added to a solution of the aldehyde $8(3.17 \mathrm{~g}, 10.6 \mathrm{mmol})$ in 50% aqueous $\mathrm{HOAc}\left(80 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . It was then filtered, poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and saturated aqueous NaHCO_{3}, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to give a mixture of the ketone and hemiketal 9a and 10a ($2.18 \mathrm{~g}, 68 \%$), mp $190-193^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) as determined by ${ }^{1} \mathrm{H}$ N M R spectroscopy (Found: $\mathrm{C}, 75.3 ; \mathrm{H}, 8.5 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 8.7 \%$). The ${ }^{1} \mathrm{H}$ N M R spectrum of the mother-liquor showed a signal ($\delta 3.58$, J 2.5 Hz) corresponding to the isomer 11a (5\%).
From 9b. The (19R)-19-trimethylsilyl ether 9b ($15 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ in methanol $\left(1 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{mg})$ for 30 min and then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was filtered, dried and evaporated, to give 9a/10a ($7.6 \mathrm{mg}, 63 \%$), mp $187-190^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).

From 10b. A solution of the 3α-trimethylsilyl ether $\mathbf{1 0 b}$ (74 $\mathrm{mg}, 0.20 \mathrm{mmol})$ in methanol $\left(5 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{K}_{2} \mathrm{CO}_{3}(74$ mg) at $20^{\circ} \mathrm{C}$ for 30 min after which it was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the extract gave 9a/ 10a ($32 \mathrm{mg}, 54 \%$), $\mathrm{mp} 187-190^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$).
(19R)-19-T rimethylsilylox y-18,19-cyclo-5 α-androstane-3,17dione 9 b ; 3 -trimethylsilylox y -3 β,19-epox \mathbf{y}-1 β,19-cyclo-5 α -androstan-17-one 10b and (19S)-19-trimethyIsilyloxy-1ß,19-cyclo-5 α-androstane-3,17-dione 11b
The mother-liquor residue 9a/10a and 11a ($254 \mathrm{mg}, 0.84 \mathrm{mmol}$)
from the above cyclization of $\mathbf{8}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and stirred with N -trimethylsilylimidazole $\left(1 \mathrm{~cm}^{3}\right)$ for 30 min . The mixture was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a crude product; this was separated by FCC. Elution with $5-10 \%$ acetone-LP gave (i) the ketal silyl ether $\mathbf{1 0 b}$ ($50 \mathrm{mg}, 0.13 \mathrm{mmol}, 15 \%$), mp $115-118{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 70.4 ; \mathrm{H}, 9.0$. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}, 9.15 \%$); (ii) the (19R)-19-silyl ether 9b ($147 \mathrm{mg}, 46 \%$), mp $110-113^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: $\mathrm{C}, 70.2 ; \mathrm{H}, 9.4 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}$, 9.15%); and (iii) the (19S)-19-silyl ether 11b ($15 \mathrm{mg}, 5 \%$), mp $140-142{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 70.3; $\mathrm{H}, 9.1$. $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.5 ; \mathrm{H}, 9.15 \%$).
(19R)-19-tert-B utyldimethyIsilyloxy-18,19-cyclo-5 α-androstane-3,17-dione 9c; 3 α-tert-butyldimethylsilyloxy-3 β,19-epoxy-1 β,19-cyclo-5 α-androstane-3,17-dione 10c and (19S)-19-tert-butyl-dimethylsilyloxy-1 β,19-cyclo-5 α-androstane-3,17-dione 11c The mother-liquor residue 9a/10a and 11a ($600 \mathrm{mg}, 2.0 \mathrm{mmol}$) from the above cyclization of 8 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 cm^{3}) and stirred with tert-butyldimethyIsilylimidazole (1.0 g , 5.5 mmol) for 3 weeks when TLC indicated the absence of starting material. An excess of MeOH followed by water was added to the mixture which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract on work-up gave a residue which on FCC with $10-50 \% \mathrm{Et}_{2} \mathrm{O}$-LP as eluent yielded fractions of (i) the (19S)-19$\mathrm{Bu}^{\mathrm{t}} \mathrm{M}_{2}$ Si ether 11c ($65 \mathrm{mg}, 8 \%$), mp 193-196 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc) (Found: $\mathrm{C}, 72.0 ; \mathrm{H}, 9.8 . \mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}$, 9.7%); (ii) the (19 R)-19-Bu ${ }^{+} \mathrm{M} \mathrm{e}_{2} \mathrm{Si}$ ether 9 c ($175 \mathrm{mg}, 21 \%$), mp $154-156{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc) (Found: $\mathrm{C}, 72.2 ; \mathrm{H}, 9.8$. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 9.7 \%$); and (iii) the $3 \beta-\mathrm{Bu}^{\mathrm{t}} \mathrm{e}_{2} \mathrm{Si}$ ketal 10 c ($300 \mathrm{mg}, 36 \%$), $\mathrm{mp} 150-152^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc) (Found: $\mathrm{C}, 72.2 ; \mathrm{H}, 9.9 . \mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 9.7 \%$).

(19R)-19-A cetox y-1 β,19-cyclo-5 α-androstane-3,17-dione 9 d

$\mathrm{Ac}_{2} \mathrm{O}\left(6.2 \mathrm{~cm}^{3}, 66 \mathrm{mmol}\right)$ and D M A P ($80 \mathrm{mg}, 0.65 \mathrm{mmol}$) were added to a solution of the ketone/hemiketal mixture 9a/10a $(1.91 \mathrm{~g}, 6.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h , after which it was diluted with $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$, poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and evaporated to give a crude product which was separated by FCC. Elution with 20% acetone-LP gave the acetate $9 \mathrm{~d}(1.42 \mathrm{~g}, 46 \%), \mathrm{mp} 163-166^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: $\mathrm{C}, 72.3 ; \mathrm{H}, 8.2 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.3 ; \mathrm{H}, 8.2 \%)$.

$3 \alpha-$ M ethox y-3 3,19 -epox y-13,19-cyclo-5 α-androstane-3,17-dione 10d

From the (19R)-19-ButM $\mathbf{e}_{2} \mathbf{S i}$ ether 9 C . To a solution of $\mathbf{9 c}$ (50 $\mathrm{mg}, 0.12 \mathrm{mmol}$) in THF ($2 \mathrm{~cm}^{3}$) was added 1.6% (v / v) conc. HCl in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 12 h to give, after dilution with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extraction, the methoxy ketal 10d ($20 \mathrm{mg}, 52 \%$), $\mathrm{mp} 207-210^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$).
From the $\mathbf{3} \alpha-\mathrm{Bu}^{\mathbf{t}} \mathrm{M} \mathrm{e}_{2} \mathbf{S i}$ ketal $\mathbf{1 0 c}$. Treatment of $\mathbf{1 0 c}(150 \mathrm{mg}$, $0.36 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) with $1.6 \%(\mathrm{v} / \mathrm{v})$ conc. HCl in M eOH ($15 \mathrm{~cm}^{3}$) as described above for 9 c gave, after two crystallizations, the 3-methoxy ketal 10d ($74 \mathrm{mg}, 65 \%$), mp $207-210^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{M} \mathrm{eOH}$) (Found: $\mathrm{C}, 76.0 ; \mathrm{H}, 9.2 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.9 ; \mathrm{H}, 8.9 \%$).

(19S)-19-H ydroxy-13,19-cyclo-5 -androstane-3,17-dione 11a

To a stirred solution of the (19S)-19-ButM $\mathrm{e}_{2} \mathrm{Si}$ ether $\mathbf{1 1 c}$ (21 mg , 0.05 mmol) in THF ($1 \mathrm{~cm}^{3}$) was added $\mathrm{lm}_{\mathrm{m}} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NF}-\mathrm{THF}$ ($200 \mu \mathrm{l}, 0.2 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$. A fter 1 h the mixture was diluted with water and extracted with EtOAc to give, after two crystallizations, the alcohol 11a ($10 \mathrm{mg}, 66 \%$), mp $194-198^{\circ} \mathrm{C}$ (decomp.) (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$) (Found: $\mathrm{C}, 73.4 ; \mathrm{H}, 8.9$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.3 ; \mathrm{H}, 8.7 \%$).
(19R)-19-A cetox y-3-trimethylsilyloxy-1 $\beta, 19$-cyclo- 5α-androst-2-en-17-one 12a
To a cooled (ice-bath) solution of the ketone 9d ($140 \mathrm{mg}, 0.41$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(300 \mu \mathrm{l}, 2.1 \mathrm{mmol})$ in D M F ($1 \mathrm{~cm}^{3}$) was added TM SOTf ($240 \mu \mathrm{l}, 1.24 \mathrm{mmol}$). A fter 3 h the mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ to give on $\mathrm{FCC}\left(18 \% \mathrm{Et}_{2} \mathrm{O}-\right.$ LP containing $0.15 \% \mathrm{Et}_{3} \mathrm{~N}$) the non-crystalline 2-enol silyl ether ($50 \mathrm{mg}, 30 \%$) 12a.
(19R)-19-A cetox y-3-triisopropylsilylox y-1 β,19-cyclo-5 α -androst-2-en-17-one 12b
A cooled (ice-bath) solution of the ketone 9d ($200 \mathrm{mg}, 0.58$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(250 \mu \mathrm{l}, 1.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$ was treated with TIPSOTf ($450 \mu \mathrm{l}, 1.3 \mathrm{mmol}$) under Ar. The mixture was refluxed for 2 h to give on $\mathrm{FCC}\left(20 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}\right)$ the noncrystalline 2-enol silyl ether $\mathbf{1 2 b}$ ($280 \mathrm{mg}, 96 \%$).
(19R)-17 $\boldsymbol{\beta}, 19-\mathrm{Bis}($ tert-butyldimethylsilyloxy)-1 β,19-cyclo-5 α -androstan-3-one $13 ; 3 \alpha, 17 \beta$-bis(tert-butyldimethylsilyloxy)3 β,19-epoxy-1 $\beta, 19$-cyclo- 5α-androstane 14 ; (19S)-17 $\beta, 19$ -bis(tert-butyldimethylsilyloxy)-1 β,19-cyclo-5 α-androstan-3-one 15 and (19S)-3 $\beta, 17 \beta, 19$-tris(tert-butyldimethylsilyloxy)-1 $\beta, 19$ -cyclo-5 α-androstan-3-one 16
To a stirred mixture of $\mathrm{NH}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and THF ($10 \mathrm{~cm}^{3}$) containing Li metal ($520 \mathrm{mg}, 75 \mathrm{mmol}$) was added a solution of the unsaturated aldehyde $8(440 \mathrm{mg}, 1.47 \mathrm{mmol})$ in THF ($20 \mathrm{~cm}^{3}$) over 20 min . A fter 1.4 h solid $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~g}, 150 \mathrm{mmol})$ was added to the mixture followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$. A fter removal of NH_{3} from the mixture by evaporation, the organic layer was washed with water to give a residue which was treated with $\mathrm{Bu}^{\mathrm{t}} \mathrm{M} \mathrm{e}_{2} \mathrm{SiCl}(990 \mathrm{mg}, 6.57 \mathrm{mmol})$ and $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{EtN}\left(1.5 \mathrm{~cm}^{3}\right.$, 8.6 $\mathrm{mmol})$ in dry D M F ${ }^{19}\left(20 \mathrm{~cm}^{3}\right)$ for 2 h at $20^{\circ} \mathrm{C}$ to give a residue. FCC of the residue, using ($0.5-50 \%$) $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$ as eluent, gave fractions of (i) the non-crystalline tris-But ${ }^{t} \mathrm{e}_{2} \mathrm{Si}$ ether 16 (38 $\mathrm{mg}, 5 \%$), (ii) the ketal $14(48 \mathrm{mg}, 6 \%)$, $\mathrm{mp} 166-170^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{M} \mathrm{eOH}$) (Found: C, 70.0; H, 10.6. $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires C , 69.9 H , 10.6\%), (iii) 15 ($180 \mathrm{mg}, 23 \%$), mp $125-127^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{M} \mathrm{eOH}$) (Found: $\mathrm{C}, 69.7$; $\mathrm{H}, 10.8 . \mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires C , 69.9 H , 10.6\%), and (iv) 13 ($30 \mathrm{mg}, 4 \%$), mp $152-160^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{M} \mathrm{eOH}$) (Found: $\mathrm{C}, 69.9 ; \mathrm{H}, 10.75 . \mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires C, 69.9; H, 10.6\%).

Acknowledgements

We thank the M edical Research Council of Canada for financial support. The Bruker AM 300 and AM X 500 instruments
were funded by the N atural Sciences and Engineering Research Council of C anada with additional support from the M anitoba Research Council (AM 300), The University of M anitoba Research Board (AM 300), The University of M anitoba (AMX500), The University of Winnipeg (AMX500) and Lakehead U niversity. M rs H. M ajgier-Baranowska has been the recipient of a Duff Roblin Graduate Fellowship from the U niversity of M anitoba.

R eferences

1 J. F. Templeton, W. Lin, Y. Ling and K . M arat, Tetrahedron Lett., 1994, 35, 5755.
2 J. C. Orr, J. F. Templeton, H. M ajgier-Baranowska and K. M arat, . C hem. Soc., Perkin Trans. 1, 1994, 2667.
3 J. F. Templeton, Y. Ling, W. Lin, H. M ajgier-Baranowska and K . M arat, J. Chem. Soc., Perkin Trans. 1, 1895, 1997.
4 P. W ieland and G. A nner, H elv. C him. A cta, 1970, 53, 116.
5 P. Wieland and G. A nner, H elv. Chim. A cta, 1968, 51, 1932.
6 P. A. Cole and C. H. Robinson, J. A m. Chem. Soc., 1991, 113, 8130.
7 T. M orato, M. H ayano, R. I. D orfman and L. A xelrod, Biochem. Biophys., Res. Commun., 1961, 6, 334.
8 L. H. K nox, E. Blossey, H. Carpio, L. Cervantes, P. Crabbe, E. Velarde and J. A . Edwards, J. Org. C hem., 1965, 30, 2198.

9 E. Santaniello and E. Caspi, J. Steroid Biochem., 1976, 7, 223.
10 D. H. R. Barton, J. Boivin and P. Lelandais, J. Chem. Soc., Perkin Trans. 1, 1989, 463.
11 P. M agnus and B. M ugrage, J. A m. Chem. Soc., 1990, 112, 462.
12 W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229.

13 G. Bodenhausen and D. J. Ruben, C hem. Phys. Lett., 1980, 69, 185.
14 A . M. H. Brodie, W. C. Schwarzel, A . A . Shaikh and H. J. Brodie, Endocrinology, 1977, 100, 1684; J. F. Templeton, Y. Ling, W. Lin, R. J. Pitura, H. M ajgier-Baranowska and A. M. H. Brodie, The IV' International A romatase Conference, June 7-11, 1996, Tahoe City, Tahoe, California, U SA .
15 D. M. D oddrell, D. P. Pegg and M. T. Bendall, J. M agn. Reson., 1982, 48, 323.
16 J. F. Templeton, Y. Ling, W. Lin, R. J. Pitura, K. M arat and J. N. Bridson, J. Chem. Soc., Perkin Trans. 1, 1994, 1149.

17 (a) A. S. M eyer, Experientia, 1955, 11, 99; (b) J. Joska and J. Fajkos, C ollect. C zech. C hem. C ommun., 1982, 47, 2423.
18 P. A. Grieco, T. Takigawa and W. J. Schillinger, J. Org. Chem., 1980, 45, 2247.
19 L. Lombardo, Tetrahedron Lett., 1984, 25, 227.

Paper 7/01570D
Received 5th M arch 1997
A ccepted 20th M ay 1997

[^0]: ${ }^{\text {a }}$ For solutions in $\mathrm{CDCl}_{3}\left(\mathrm{CHCl}_{3}\right.$ internal standard) on a Bruker A M 300 instrument unless otherwise indicated. ${ }^{\text {b }}$ The acetyl group signals occur at ca. $\delta 21\left(\mathrm{COCH}_{3}\right)$ and $171\left(\mathrm{COCH}_{3}\right) .{ }^{\mathrm{c}}$ The Bu'M en Si signals occur at $\delta-5$ to $6\left(\mathrm{SiM}_{2}\right)$, $[10 \mathrm{c}-2.77,-2.83 ; 13-4.44,-4.81,-5.16,-5.32 ; 14-2.80$, $-2.85,-5.27,-5.32$; $15-4.47,-4.77,-4.77,-5.15]$, ca. $\delta 18\left(\mathrm{CM}_{3}\right)$ and 25 to $26\left(\mathrm{CM} \mathrm{e}_{3}\right) .{ }^{\mathrm{d}} \delta 64.21$ and $64.47\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$. ${ }^{\mathrm{e}}$ D etermined by 2 D analysis on a Bruker AM X 500 instrument. ${ }^{\mathrm{f}} 9 \mathbf{b} \delta-0.53$; 10b 1.73 ; 11b -0.27 ; 12a 0.21 ($\left.\mathrm{M} \mathrm{e}_{3} \mathrm{Si}\right) .{ }^{\mathrm{g}} \delta 50.13\left(\mathrm{OCH}_{3}\right) .{ }^{\mathrm{h}} \delta 12.61$ (M e2CH Si), 17.98 ($\mathrm{M} \mathrm{e}_{2} \mathrm{CHSi}$). ${ }^{\mathrm{i}-\mathrm{k}} \mathrm{N}$ umbers in columns are interchangeable or overlapping signals.

